
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Department of Physical Electronics

Design and construction of a digital CCD
spectrometer

Research project

Author: Filip Dominec
Supervisor: Ing. Jaroslav Pavel

Academic year: 2009/2010

.

I declare hereby that I have elaborated this research project independently and all used literature is listed
in the reference section.

Praha, 30. 4. 2010 Filip Dominec

Abstrakt

Název práce: Návrh a konstrukce digitálńıho CCD spektrometru

Autor: Filip Dominec

Obor: Fyzikálńı inženýrstv́ı

Druh práce: Výzkumný úkol

Vedoućı práce: Ing. Jaroslav Pavel

Abstrakt: Předmětem této práce je návrh, vývoj a výroba kompaktńıho digitálńıho spektrometru. Spek-
trum je proḿıtáno p̌res difrakčńı mř́ıžku na CCD sńımač, vzorkuje se 10-bitovým A/D p̌revodńıkem do
paměti mikrokontroleru a nakonec je odesláno do osobńıho poč́ıtače p̌res rozhrańı USB. V poč́ıtači je
mě̌rené spektrum digitálně zpracováno a zobrazuje se pomoćı grafického uživatelského rozhrańı. Spek-
trometr pracuje v optické a bĺızké infračervené oblasti p̌ribližně od 400 do 900 nm, dané použitým
ǩreḿıkovým CCD sńımačem.

V práci je popsána jak montáž optické soustavy a stavba obvodu zpracovávaj́ıćıho analogový signál,
tak i uživatelský software schopný vyhodnocovat a ukládat mě̌rená spektra. V závěru práce jsou uvedeny
postupy pro kalibraci p̌ŕıstroje a p̌ŕıklady jeho použit́ı v praxi.

Kĺıčová slova: spektrometr, CCD sńımač, komunikace p̌res USB

Title: Design and construction of a digital CCD spectrometer

Author: Filip Dominec

Abstract: This project aims to design, develop and build a compact digital spectrometer. The spectrum
is projected with a diffraction grating on a CCD detector, sampled in a 10-bit A/D converter to the
microcontroller memory and finally transmitted to the computer via USB. In the computer it is digitally
processed and displayed in a graphical user interface. The spectrometer operates in the optical and
near-infrared region, approximately from 400 to 900 nm, which is given by the silicon CCD detector.

Not only the optical setup and electronic circuit used to process the analog signal are described
in this work, but also the software enabling the user to evaluate and save the measured spectra. The
calibration procedure and practical examples are discussed at the end.

Key words: spectrometer, CCD detector, USB communication

3

Contents

1 Introduction 5

2 Theory 7
2.1 General dispersive spectrometer design . 7
2.2 CCD detector . 8

2.2.1 Overview . 8
2.2.2 Driving a linear CCD . 8
2.2.3 CCD output handling . 9

2.3 Description of the Atmega8 microcontroller . 10
2.4 Communication interface . 11

2.4.1 Comparison of different interfaces . 11
2.4.2 Hardware for USB communication . 12
2.4.3 Brief description of USB protocol . 13

3 Solution 13
3.1 Hardware . 13

3.1.1 Optical setup . 13
3.1.2 Diffraction grating source . 15
3.1.3 Microcontroller circuit . 16
3.1.4 Supply circuit . 17
3.1.5 Spectrometer casing . 17

3.2 Microcontroller firmware . 18
3.2.1 General constants and procedures . 19
3.2.2 CCD driving . 20
3.2.3 USB communication . 21
3.2.4 The main loop . 25

3.3 Computer software . 27
3.3.1 Backend for USB communication . 27
3.3.2 Data preprocessing according to calibration . 28
3.3.3 Graphical user interface . 28
3.3.4 Calibration . 29

4 Results 30

5 Conclusion 31

4

1 Introduction

Optical spectrometry extensively contributed to the development of physics in recent two centuries. For
instance, it was used to determine the ion composition of distant stars, although this task had been
enlisted several years before as one of questions which mankind can never answer. Moreover, the solar
spectra revealed new, at that time unknown spectral lines, which were later resolved to come from
helium. At the turn of the twentieth century, the absorption and emission spectra of various materials
supported the need of building a new, quantum theory. Optical spectroscopy developed into an essential
measurement method in analytic chemistry, astronomy and many other fields.

Most optical spectrometers that produce a spectral waveform spanning over a selected region of
wavelengths may be divided by their principle of operation into 3 most important groups:

1. Fourier-transform spectrometers use Michelson interferometer to measure how the interfer-
ence signal oscillates when one of the mirrors moves. The interference function is later digitally
processed to get the intensity spectrum. They can achieve very high spectral resolution and can
measure even far-infrared spectra, assuming IR optics and detector are used.

2. Spectrometers with a monochromator usually utilize rotating diffraction grating. They are
simpler and less sensitive to environment, as no interference fringes are measured. The Czerny-
Turner setup is often used, but other different setups may suit a particular purpose better. For
example, to replace the rotating grating by a prism with moving mirror may be favourable for UV
spectroscopy or when higher diffraction orders are to be eliminated.

3. The latter setup can be modified to obtain a spectrometer with multi-channel detector and
no moving components. The grating is then fixed and the spectrum is projected on a broadband
detector, which is usually a CCD.

The spectrometers in this category largely differ by sensitivity, resolution, application, size and
price. For instance, the High Accuracy Radial Velocity Planet Searcher at La Silla Observatory in
Chile is able to detect 1 m/s velocity difference in star’s movement, enabling to indirectly search
for extrasolar planets. On the other hand, spectrometers of this type can be made very compact
and they are optimal for applications where resolution and sensitivity is not critical. Some models
are available as a PCI card fitting into a computer.

However, even the price of these handheld spectrometers usually exceeds the $1000 barrier, making them
hardly affordable as a educational gadget for a high-school science practicals, for example. Moreover,
the supplied proprietary software usually does not permit any modifications or scripting, which may be
needed when automating routine work in research laboratory.

This research project focuses on building a simple, cheap and compact spectrometer meeting fol-
lowing objectives:

1. The spectral resolution (∆λ) should be better than 5 nm.

2. No moving components should be used.

3. The device and supplied software should be easy to use so that anybody with basic knowledge of
spectroscopy can use it immediately.

4. The supplied software must run on most major operating systems with dependence on freely
available programs only.

5

5. Except for initial calibration, no further maintenance would be required. Each device built will
store its own calibration data in its permanent memory to prevent the need for recalibration when
another model is connected.

6. Communication with computer and electrical supply should be performed via single USB cable.

The purpose of this research project is to decide whether such device can be built at a substantially
lower price and yet remain suitable for practical tasks, as well as to present a possible way of doing that.
Additionally, the computer software is released under free license, allowing the aforementioned modi-
fications and scripting. Last but not least, the data acquisition, processing and displaying techniques
can be reused in many other applications involving measurement automation.

6

2 Theory

2.1 General dispersive spectrometer design

In this research project, a diffraction grating design with a CCD detector was used. This section
describes how the light components are separated and delivered to the CCD.

In the horizontal plane, the incoming light must be spatially limited by a vertical slit. Then the
spatial limitation is converted to angular limitation using a concave mirror or a convex lens. Ideally, we
obtain a parallel beam of white light. Its width is limited either by the size of the mirror or lens used,
of by the angle of the beam passing through the slit.

The light components of different wavelengths separate after being reflected into different angles
by a diffraction grating. Finally, the angular separation might be converted back to spatial separation
using another lens or mirror as drawn in Fig. 1a. However, this would require a big lens with diameter
similar to the length of CCD. The spatial difference would be proportional to its focal length, probably
resulting in a small spatial separation. Fortunately, the second lens is not necessary, as the first lens
can be shifted several millimeters away from the slit to create a real image in arbitrary distance from
the grating (Fig. 1b). The beam incident on the diffraction grating becomes slightly convergent when
a single lens is used. This results in nonuniform angular difference even for single wavelength and the
projected image of the slit becomes slightly blurred. However, for the sharp angle of convergence this
effect can be neglected. There are several other phenomena limiting the spectral resolution of this

Fig. 1: Horizontal schematics and light paths

lens diffraction
grating

lens

linear detector

a)

lens diffraction
grating

linear detector

b)

lens diffraction
grating

cylindrical mirror

c)

CCD detector

setup, but assuming an ideal diffraction grating is used, the nonzero width of the input slit dominates.
In the vertical projection, a single point in the slit plane is projected onto another point on the

sensor as shown at Fig. 2a. As the CCD sensor is very narrow, the spectrometer would be sensitive in
only one point at the slit, not depending on the incident angle. This would be optimal if either a thin
optical fiber or a point source are measured.

However, it was expected that the incident light would mostly be cover some area on the slit and
that the spectrometer should be sensitive at nonzero length along the slit. Therefore a cylindrical mirror
was inserted near to the focal plane to concentrate each spectral line (image of the input slit) into a
much shorter line at the detector (Fig. 1c, 2b).

If the light entered the slit at a single point and this point slightly moved in vertical axis, its
image would move in vertical axis, too. When a cylindrical mirror is used, the point image would still be
projected onto the CCD, albeit under different angle. The detector could not be put directly in the focal

7

plane of this mirror, because the horizontal focus given by the lens must be maintained. Nonetheless,
the sensitivity to the light entering the slit was substantially improved.

Fig. 2: Vertical schematics and light paths

lens
diffraction
grating

CCD detector
(horizontal)

a)

b) cylindrical
mirror

2.2 CCD detector

2.2.1 Overview

The charge coupled device, CCD, was originally designed not to be an optical detector, but a memory
instead. It should work as an analog shift register, storing arbitrary charge in each of its cells and reading
them sequentially. Soon it was discovered that illumination causes internal photoelectric effect in the
silicon substrate and fills up each memory cell with additional charge proportional to the incident light
intensity. Although CCD was rarely used as a memory, it found widespread application as a sensitive
optical detector both in consumer electronics and in high-end scientific instruments such as astronomical
telescopes.

CCD detectors may be divided into two groups: linear CCDs, where one row of pixels is shifted to
the output, and matrix CCDs, where the bottom row is fully shifted out always when all columns are
shifted down by one pixel. For this project, a linear CCD was chosen over a matrix CCD because only a
linear detector several centimeters long was needed. Still, it would be possible to build a custom matrix
CCD driver, too [1]. Another option, a CMOS sensor, was not used because of worse availability.

2.2.2 Driving a linear CCD

Although the internal design of the particular components may differ, the basic principle of CCD op-
eration should remain similar. In the CCD register itself, a silicon substrate is covered by a thin layer
of insulator and the electrodes. When a voltage is applied to an electrode, the electrons get trapped
under the layer of insulator. By changing the voltage distribution on the surface, the charge packet can
be moved with negligible loss.

In a common two-phase driven CCD, there are two electrodes on the insulating layer over each pixel.
The geometry of electrodes is asymmetrical, dragging the electron packet nearer to one end of electrode
[11]. Therefore, a two-phase only signal is needed to transport the charge to the next pixel. The two
phase crossing must be nearly symmetrical, which requires them to be switched at once1.

The silicon surface can integrate the charge produced by internal photoelectric effect, but this is
rarely used now. Instead, contemporary sensors contain an array of photodiodes, which are much more

1In one of the first designs, these signals were switched in two consequent instructions of the microcontroller and the
delay of ≈ 80 ns probably caused the CCD to malfunction.

8

sensitive than the actual CCD register. When a transfer gate impulse comes, the charge is transferred
to each corresponding pixel in the CCD register. This also eliminates blur of the image when the charges
are shifted [4]. At the end of the analog register, the charge is coupled out to a pre-amplifier.

Fig. 3: Simplified diagram of waveforms driving a linear CCD. Input levels are TTL, corresponding output
ranges approximately from 2 to 7 V. Grey areas contain each pixel’s output voltage.

transfer gate

output

reset gate

phase 2

phase 1

2.2.3 CCD output handling

Depending on the particular design, the two CCD phases and additional one to three inputs need to
be activated by an impulse so that each pixel is read. After correct pixel driving signals are input, the
CCD shifts the pixel’s charge to its internal preamplifier and the corresponding voltage signal occurs at
one pin. Sometimes is the output voltage stored in a sample-and-hold circuit.

The CCD detector output shall depend on the illumination linearly, but the signal is inverted, at
least in the CCD detectors considered, e. g., for the CCD used in this project (NEC µPD3799): Under
no illumination, the output is approximately +7 V, whereas under full saturation the output drops to
+2.4 V. The influence of incident light on the CCD register itself and its supporting circuitry, along
with thermal electrons, can interfere with measurement.

• Blooming occurs when excess charge concentrates in one cell and it leaks into neighbouring
cells. It manifests as a flat, fully saturated regions with sharp edges, effectively obscuring the
signal in the vicinity of the intensively illuminated spot. Most modern CCDs address this by
electronic design, but the simple linear CCDs used in this project do not. Overexposed areas must
be avoided by either reducing the light intensity or integration time. For instance, the saturation
exposure of the used linear CCD is lower than 0.5 lx·s [4].

• Charge volatility: The stored charge decays over time. This is expected to be caused by both
thermal electrons and incident light. At room temperature, it was experimentally proven that the
CCD must be read in ≈ 0.5 s after gate transfer to avoid this. This presents a time constraint
to the data acquisition and transmitting time. When the CCD is read in bursts, a sawtooth-like
additive bias will occur.

• Oversaturation: When the CCD is illuminated by common daylight for a while (> 10 lx·s),
the chip becomes so oversaturated that several full read-outs are needed to drain the integrated
charge. Otherwise the output voltage may drop even under the saturation voltage.

Sometimes this manifested as a step transition from saturation of one colour component in the
middle of CCD reading, even when the CCD has been in dark for the last integration period.

9

Fig. 4: One of the first measurements of the CCD output on an oscilloscope. On the screen, there are two
consecutive readouts of CCD. The detector window was covered by four thin paper stripes. Note the end-
of-register signal in the middle of the screen and the blooming which slightly overlaps the less illuminated
areas.

• Thermal noise is caused by random thermal electron-hole pairs. It is probably lower than
electronic noise in the sampling circuit used.

Some of the aforementioned issues can be addressed by thermoelectrical cooling of the sensor, as a 20
◦C temperature drop is expected to effectively suppress the thermal noise and conductivity. No cooling
was used in this design because of rather high power requirements of a Peltier cell.

When a colour CCD is used, the red, green and blue signals must be averaged to obtain sensitivity
covering the whole spectrum to be measured. This was done by inserting a 10 kΩ resistor at each channel
and by connecting their second terminals together. The resulting spectral sensitivity is inhomogeneous,
which was later addressed by amplitude calibration.

2.3 Description of the Atmega8 microcontroller

The proper CCD driving, analogue to digital conversion and consequent data transmission would require
complicated circuitry if constructed from discrete components or TTL logic. Even such designs were
constructed but most of these tasks can be easily handled by a common microcontroller of middle
class. The most demanding task is the USB communication, which determines the minimum MCU
computational power to approximately 12 MIPS at least. This topic is discussed later.

The microcontroller should be equipped by a sufficient internal analog-to-digital converter (ADC).
Usage of an external ADC would present additional cost and complexity. Many contemporary micro-
controllers have an internal 10-bit converter able to perform at least 10,000 samples per second, which
is sufficient for this application.

Additionally, the need to avoid the mentioned sawtooth bias requires that the whole CCD is read
at once and the spectral curve is stored in the memory until it is transmitted to the computer. Many
microcontrollers come with fairly limited amount of internal RAM, which ranges from tens of bytes to
1 kB in the middle class. Taking into account that about 100 bytes are allocated by various program

10

data and that each pixel occupies 10 bits, there remains room for approximately 720 pixels if 1 kB of
RAM was used. This severely limits the theoretical spectral resolution of 5300 pixels. The real spectral
resolution in this case is, however, more limited by imprecise optics, and therefore the 1 kB of RAM
was considered sufficient.

If higher optical resolution was achieved and consequently bigger data buffer was appropriate, micro-
controllers with 2 kB or 4 kB of RAM are available for approximately 5 Euro and 8 Euro, respectively. A
cheaper solution would be an external RAM. As of 2010, the market is saturated by cheap parallel static
RAM circuits with capacity in tens of kB. However, most of these circuits use more than 20 pins for
addressing and data transmission, which would occupy all available pins of the cheaper microcontroller.
The SRAM circuits communicating over the serial line are much less available, although there are plenty
of rather cheap serial EEPROM circuits, which have limited number of write cycles. Possible candidates
could be Microchip 23K640 and 23K256 models with 8 and 32 kB, respectively. Anyway, the use of
external RAM would make the device more complicated and error prone. Therefore no external RAM
was used in this design.

As 1 kB of RAM was considered sufficient, the Atmel Atmega8 microcontroller was found to fullfill
all aforementioned requirements. Moreover, this MCU supports in system programming, which was
very handy to develop and debug communication with both CCD and computer. The Atmega8-16PU
version has 28 pins, of which 4 were occupied by DC supply, 2 by USB, 2 by oscillator, 4 by CCD driving
signals and one for ADC input. There remained enough pins and capacity for a 7-segment display and
simple user controls on the device, but later it was considered impractical and only the computer control
was left. As for 2010, Atmega8-16PU circuit is still one of the most cost effective microcontrollers on
the market, with price of about 1.5 Euro.

2.4 Communication interface

2.4.1 Comparison of different interfaces

Several different interfaces are commonly used to transfer data between a computer and external in-
struments.

• The serial port (RS232) can use 3 wires only, one wire for each direction and a ground. The
data rate must be set on both sides. Serial line is often used in industrial applications and for
older computer peripherals. The microcontroller used in this project has hardware circuit for
asynchronous serial communication, which could make this option favourable. However, RS232
begins to disappear from newer computers and it requires the user to set the serial port options
manually, too.

• The parallel port would probably require writing an own driver for data transfer and it would be
too bulky for this project.

• The GPIB interface is often used to communicate with scientific instruments, but is rarely available
at standard computers, let alone notebooks. Moreover, it shares the disadvantages of parallel port.

• The ethernet interface uses complicated, high-level protocol, which probably could not be pro-
cessed by the microcontroller unit (MCU) and would increase the device complexity.

The Universal Serial Bus interface remains to be the most advantageous option, providing decent data
rate, excellent availability and sufficient power supply.

11

In the low-speed mode, the signalling speed is 1.5 Mb/s. This data rate can be processed by the
MCU firmware, although the MCU has no hardware acceleration for USB communication.

For higher data rate in full-speed mode of 12 Mb/s, a dedicated USB to RS232 converter may be
used. An example is the Future Technology FT232BM circuit. According to the datasheet, it should
be able to communicate with computer via USB, handle all USB protocol messages and communicate
with the MCU via serial port. In this case the maximum data rate over serial port should be 2 Mb/s.
[9] This may not seem as an advantage over firmware USB driver until one realizes that it is the USB
protocol in the low-speed mode what presents the bottleneck, limiting the average data rate to less than
one tenth of the signalling speed. Likewise, when the MCU communicates using the USART (Universal
Synchronous and Asynchronous serial Receiver and Transmitter) subcircuit, less time is spent by the
driver routines used to handle the messages. The USB-RS232 converter was not used here in order to
keep the device simple.

2.4.2 Hardware for USB communication

As no clock signal is sent over USB and the USB specification requires 1.5 % maximum tolerance for
the timing [16], the MCU clock shall be timed precisely. Typically, the firmware drivers require oscillator
whose frequency would be a multiple of 1.5 MHz. The minimum clock frequency is limited by the
particular driver; mostly at least 8 processor steps per bit are required. A 12 MHz quartz crystal was
used in this project.

The USB cable contains 4 wires, which are listed in the table 1. The pins of the USB-B connector,
used on the device side, are drawn in Fig. 5a. The logical one voltage should fall between 2.7 and 3.6
V [16] , therefore the 5 V TTL output of the MCU must be limited by Zener diodes. Additionally, the
D- line must have logical one when the MCU is reset [16, p. 141], which is ensured by the 1 kΩ pull-up
resistor (Fig. 5b).

Table 1: USB cable wires

Wire label Usual colour Purpose
GND black ground
UCC red DC power (up to 500 mA at 5 V)
D+ green half-duplex, differential data line
D– white dtto

The USB datasheet [16, p. 128] has some stricter requirements, e. g. for the device resistance, but
the circuit from Fig. 5 worked flawlessly. Similar schematics are used in many other projects.

Fig. 5: a) Pins on the USB B connector; b) Minimal circuit for connecting ATMEGA8 to USB

100R

100R

100R

100R

1k3.3V3.3V
100n

ATMEGA8

VCC

GND

D-

D+

VCC

GND

PD4

PD2

XTAL2

XTAL1

12 MHz

VCC

GND

D-

D+

USB B

b)a)

12

2.4.3 Brief description of USB protocol

The data sent over USB are encoded using non-return-to-zero format: when a ”0” bit is transmitted,
the D– and D+ differential lines switch their state. When a ”1” bit is transmitted, no change occurs.
However, when more than 6 consecutive ”1” bits are to be transmitted, one ”0” bit is stuffed after
them to enable the receiver to synchronize its clock at an edge of incoming signal. The data lines do
not have to be always differential. For several low-level signals, e. g. end of packet, the D– and D+
lines may go both to logical ”0” or ”1”.

All data are sent in packets. The packet contains an initial sync sequence, the packet identification
number and optionally payload or control data along with its checksum. Some packets transmit payload
data, while other packets are used for handshake and identification only. Three packets, token, data
and handshake, usually form a transaction [5]. The USB protocol, mostly in a simplified, yet working
form, is handled fully by the firmware driver.

After being requested by the host, each USB device identifies itself by a vendor number and an
USB class. Most devices fall into the human interface device or mass storage classes. Each class
is handled slightly differently by the computer. The human interface device class was chosen due to
its simplicity and widespread universal drivers [16]. USB protocol is rather complicated and its more
detailed description is beyond the scope of this document.

There are several software implementations of the USB protocol for AVR microcontrollers. For
example, Igor Češko [2] and Jan Smrž [12] implemented their own. This project utilizes the V-USB
driver by Christian Starkjohan [13] because of its good documentation and numerous practical examples.
The driver is licensed under GNU GPL for noncommercial use.

All these drivers use a hardware interrupt, which is triggered by incoming USB packet. At 1.5
Mbit/s signalling speed and 12 MHz main oscillator, only 8 clock cycles remain to receive, convert and
store each bit. This requires that the microcontroller completely halts all another operation when any
USB packet is received or transmitted. Besides, the USB protocol has the master-slave topology, and
accordingly the MCU stops to receive or transmit packets asynchronously with its operation, which has
to be taken into account when programming real-time tasks.

3 Solution

3.1 Hardware

3.1.1 Optical setup

The optical components holders were made of a standard aluminium L-profile 25 mm high, 2 mm thick
and with 12 mm long foot. The beam path axis was chosen to be 14 mm above the base surface. This
provided optimal vertical room for the beam, maintaining enough room between the light path and the
base for bolts etc.

• The input slit was made of two razor blade segments, 15 mm long. One of the segments was
glued onto the inner side of the L-profile to cover half of the input hole. Its sharp edge was
adjusted to be perpendicular to the base. The second segment was clamped next to it by a short
screw with a spring bushing. This makes adjusting the slit width possible. In the final setup, the
slit width of 50 µm – 100 µm appeared to be appropriate.

13

• The collimating lens had 14 mm diameter, focal length f ≈ 30 mm, plano-convex geometry and
standard anti-reflex coating. (Generally, any common small lens of similar f may be used.) It
was glued at the edges to a hole of similar diameter, keeping its axis at the beam axis. At the
base of the L-profile, a notch instead of a hole was grinded to enable focusing.

• The reflective diffraction grating was attached nearly perpendicular to the incident beam. For the
first prototype, a 20×20 mm segment cut from the outer edge of a blank CD-R was used. Notes
to this solution are discussed later. The grating was rotated so that the most desired spectral
range in the first diffraction order is projected on the CCD.

• The cylindrical mirror was obtained from a scrap photocopier. It is a polished metal rectangle,
42×15 mm in size. Its focal length is approximately 30 mm. The mirror was attached to a metal
chip, which had a groove at the bottom. The groove fitted to two spikes in the bottom of the
L-profile. At the top, an M3 screw allows to adjust the vertical angle of the mirror.

• The CCD detector was glued to a low profile PMMA slab. Its pins were shortened not to obscure
any passing light and soldered to the controller circuit. The slab had a notch for the bolt.

The output signal from three colour channels was averaged by three 10 kΩ resistors near the
CCD and it was connected using a thin shielded cable to eliminate noise from the digital wires.
Between the supply voltage and ground, a 100 nF capacitor was inserted.

Fig. 6: Detail of the CCD mount and the adjustable cylindrical mirror

The optical setup was mounted (by M3 bolts and nuts) to a 2 mm thick aluminium plate, of approx-
imately 70×90 mm in size. It provided a decently rigid, yet light base. There remained 6 degrees of
freedom, that had to be precisely adjusted to obtain effective and narrow spectral lines projected on
the CCD.

14

1. The input slit width: The second razor segment should limit the light entrance to an uniform,
thin line.

2. The longitudinal position of the collimating lens should focus the slit onto the CCD in the
horizontal plane.

3. The vertical grooves orientation of the diffraction grating should be parallel to the slit.

4. The horizontal angle of the diffraction grating: The whole desired spectral range should be
projected onto the CCD.

5. The cylindrical mirror and CCD should be perpendicular to the beam coming from diffraction
grating, which illuminates the center of CCD.

6. The vertical angle of cylindrical mirror and the corresponding position of the CCD detector: Along
with previous setting, it should focus the spectral lines to illuminate the narrow CCD line the most
effectively.

The coarse setting was done visually using the light from a standard fluorescent lamp. The fine tuning
of the lens position was performed when the device was connected to computer and the spectral lines
were optimised to be as narrow as possible.

3.1.2 Diffraction grating source

The reflection diffraction grating of suitable parameters prove to be the component, that was the hardest
to obtain for this project, maintaining the low price criterion. Ideally, a blazed diffraction grating with
500 – 1000 grooves/mm, with size at least 8×8 mm and with optimum efficiency in the visible range
should be used. As of 2010, there is likely no shop in the Czech Republic where such gratings could be
bought easily, according to the search on Internet.

Future models can use a professional grating, which would probably cost at least 50 Euro [8] . This
price is not limiting, however it would spoil one of the objective of minimizing the device’s cost. Maybe
several gratings could be replicated after one professional grating is bought.

Alternatively, there is a proof that a reasonable diffraction grating may be manufactured using a
nearly home-built ruling engine, taking into account the contemporary availability of MCUs, lasers and
stepping motors [10]. Anyway, the precision requirements for such ruling engine are very tight. To
achieve 1 nm spectrometer resolution at the 500 nm wavelength, the RMS error of groove spacing must
be at most few nanometers. This limits the groove spacing error to less than 10 diameters of silver
atoms!

For the first prototype, the CD-R slab worked quite well. The cheapest CD-R had unexpectedly
low stray light and no apparent Rowland ghosts coming from low-frequency modulation of the grating.
Apart from non-optimal efficiency and fragile metallic coating on the surface, the biggest problem was
caused by the grooves curvature. A monochromatic beam limited by the slit is projected into a crescent
shape in the focal plane of the collimating lens. Instead, a vertical line is required, as the cylindrical
mirror focuses the beam in the vertical plane.

15

3.1.3 Microcontroller circuit

Aside from the CCD detector and the supply circuit mentioned later, the electronics do not require
many components. The MCU is clocked by a 12.000 MHz quartz oscillator. Some designs suppose to
couple each oscillator input to ground by two 30 pF capacitors, but this has proven not to be necessary.

The CCD driving signals use the TTL levels, hence the CCD inputs may be connected directly to
the MCU pins. For the used NEC µPD3799 CCD detector four signal wires are needed: the phase 1
and phase 2 signals, the RB (reset gate) and the TG (transfer gate) signals. When another CCD is
used, additional driving signals may have to be added, e. g., for NEC µPD3797, additional CLB (reset
feed-through level clamp clock) negative impulse must be included after the RB impulse. According
to the particular datasheet, both the firmware routines and hardware wiring can be easily modified to
accomplish this. Note that one MCU clock takes only 83 ns and some minimum pulse length and delay
must be maintained according to the CCD datasheet.

As was noted in the 2.2.3 section, the output signal of CCD is too high to be directly connected
to the analog-to-digital converter (ADC) of the MCU. The output must be linearly inverted, amplified
and shifted before passing to the ADC, which measures in the range of 0 to 5 V. There is an older
project of Paul Stoffregen, who accomplished this transformation using five operational amplifiers, of
which two act as a sample-and-hold circuits, storing the two voltage levels of dark and saturated signal
[14]. A circuit of two potentiometers and only one operational amplifier was used here instead, as both
the dark and the saturated voltage levels both prove to be relatively stable.

If only one colour component becomes saturated, the output signal gets distorted and therefore
unusable. Accordingly, the signal range should be stretched so that full saturation of single colour
component corresponds to full saturation of the signal entering the ADC. In other words, the output
signal must be amplified with gain enough to prevent the saturation of any colour component in CCD.
The circuit with inverting preamplifier and microcontroller is shown in Fig. 7. Let us denote the CCD

Fig. 7: The microcontroller circuit. At its left side it is connected to the supply circuit, at right to the CCD
detector.

ATMEGA8

PD5

ADC0

12 MHz

AVCC

VCC

GND

PD0

PD1

PD3

PD2

XTAL2

XTAL1

PD4

RB

Ph1

Ph2

TG

10k

50k

100k

+12 V

GND

CCD Output

+12 V stab.

GND

+ 5 V

+ 5 V stab.

d−

d+

LM358

220µ

100µ

R 1AR 1B

R 2AR 2B

V REF
V ADC

V CCD

output voltage as Vccd, the voltage reference from R1A,B as Vref = R1A

R1A+R1B
· 5 V and the voltage

at the output of the operational amplifier as Vadc = Vadc(Vccd, Vref). Taking into account that the
operational amplifier inputs virtually no current, one obtains that

Vccd − Vref
R2A

=
Vref − Vadc

R2B

16

and after simple arrangement

Vadc =
R2A +R2B

R2A

· Vref −
R2B

R2A

· Vccd.

This proves that if not saturated, the operational amplifier performs the desired linear transformation.
The voltages do not have to be known precisely, as the potentiometers R1, R2 may be tuned depending
on the waveform in computer. The amplification factor should be between 3 and 5.

The operational amplifier supply voltage has to be 12 V, which presents a risk of destroying the
ADC circuit by excess voltage, as the maximum input voltage of ADC is limited to 5.3 V in this case
[3]. In order to prevent this, a 10 kΩ series resistor and a diode with low voltage drop limit the ADC
input voltage, as shown at Fig. 7.

3.1.4 Supply circuit

The supply circuit converts the noisy 5 V USB voltage supply to stabilized 12 V required by the CCD
detector and to additional stabilized 5 V for the ADC. Additionally, it limits the USB signalling levels
to 3.3 V as required by the specification [16].

For the voltage conversion, a boost converter integrated circuit MC34063 was used. In short, the
circuit senses the output voltage at the CII (comparator inverted input). When the voltage drops below
1.25 V, the SC (switch collector) shorts to ground, letting the current through the L1 coil and Rsc grow.
The CLS (current limit sense) voltage drops as the current increases and when the voltage drop exceeds
approximately 300 mV, the SC pin closes. The energy stored in the L1 coil creates an impulse of higher
voltage that charges the C2 capacitor. The C1 capacitor determines the time interval of operation. The

Fig. 8: The supply circuit. At its left side it is connected to the computer via USB cable.

MC34063A

SC

CLS
7

1

CII

SE
2

5

DC

VCC
6

8

GND

TC
3

4

+12 V stab.

+5 V stab.

GND

+ 5 V

USB D−

USB D+

3.3 V

100R 100R

3.3 V

100R 100R

1n

220R

RSC = 0.5R

L1
≈100µH

25k

2k
C2
100µ
25 V

LM7812

OUT
3

IN
1

GND
2

LM7805

OUT
3

IN
1

GND
2

d+

d−

+5 V

1k

GND

output voltage is given by the voltage divider parallel to the C2. The selected resistances of 25 kΩ and
2 kΩ set the minimum C2 voltage to 16 or 17 V. This voltage is limited by the LM7812 and LM7805
stabilizers to 12 V and 5 V, respectively. Reducing the C2 voltage would increase efficiency, but risk of
negative ripple in the 12 V stabilized output would be present due to the voltage drop at LM7812.

The USB signalling wires D+, D– are connected according to the Fig. 5.

3.1.5 Spectrometer casing

The spectrometer was cased in a black PVC box with dimensions 190 × 90 × 50 mm. About a half
of the box is occupied by the optical mount, the rest contains the two circuits. The optical mount is
fixed to the front panel by two M3 bolts with head containing a nut, which are common e. g. in older

17

computer connectors. This enables the user to fix some light source or cuvette in front of the input slit
(or vice versa, attach the spectrometer onto a bigger device output) easily.

These two bolts, as well as whole optical mount, were not connected to the USB ground to prevent
accidental short-circuit or ground loop. Although the matt inner side of the plastic box has low reflection

Fig. 9: A view of the assembled spectrometer without top cover and paper light shielding. The light passes
through the input slit at the top right and follows the path indicated at Fig. 1. At the left, there are the
converter and microcontroller circuits and USB output.

itself, the cylindrical mirror and CCD were additionally covered by a folded sheet of black paper to
minimize the stray light coming directly from the input slit or any tiny hole left in the plastic case.

3.2 Microcontroller firmware

In this section, the full microcontroller firmware written in the C language (except for the USB driver)
will be described, as it well illustrates the device function. The code comments were mostly maintained.

The microcontroller was programmed via the serial programming interface using a USBAsp hardware
programmer and the avrdude program. The firmware code was compiled on Linux (Ubuntu 10.04) in
avr-gcc compiler and it was loaded into the microcontroller flash memory with commands:

1 avr−gcc −g −Wall −O1 −mmcu=atmega8 −c main . c −o main . o
2 avr−gcc −g −Wall −O1 −mmcu=atmega8 main . o −o main . e l f
3 avr−o b j c o p y − j . t e x t − j . data −O i h e x main . e l f main . hex
4 sudo avrdude −p m8 −c usbasp −U f l a s h : w: main . hex

To enable the 12 MHz clock, two reserved bytes in the persistent microcontroller memory, called fuses,
must be set to hexadecimal values of 0xff for lfuse and 0xd9 for hfuse.

1 sudo avrdude −p m8 −c usbasp −U l f u s e : w: 0 x f f :m −U h f u s e :w: 0 xd9 :m

During experiments, the fuses have been set wrong several times, which disabled also the serial pro-
gramming needed to set fuses back. This was fixed by a parallel programming fuse resetting tool
[6].

18

3.2.1 General constants and procedures

At the beginning, the essential header files from the avr-libc library are included.

1 #i n c l u d e <a v r / i o . h>
2 #i n c l u d e <a v r /wdt . h>
3 #i n c l u d e <a v r / i n t e r r u p t . h>
4 #i n c l u d e <u t i l / d e l a y . h>
5 #i n c l u d e <a v r / eeprom . h>
6

7 #i n c l u d e <a v r / pgmspace . h>
8 #i n c l u d e ” u s b d r v / u s b d r v . h”
9 #i n c l u d e ” u s b d r v / oddebug . h”

To make the CCD driving routines clear, each CCD pin is referenced by its name from the datasheet
instead of a simple port number. The CLB and SHB signals are predefined for the case that a CCD
with more complicated driving signals is used. This definition enables to change the connection easily
if needed.

1 // PORTD p i n s d e f i n i t i o n to comply w i t h d a t a s h e e t
2 #d e f i n e PH1 BV (PD0)
3 #d e f i n e PH2 BV (PD1)
4 #d e f i n e TG123 BV (PD3) // T r a n s f e r g a t e s (R+G+B)
5 #d e f i n e RB BV (PD5) // R e s e t g a t e c l o c k
6 #d e f i n e CLB BV (PD6) // R e s e t feed−th rough l e v e l clamp c l o c k (d i s a b l e d)
7 #d e f i n e SHB BV (PD7) // Sample and h o l d c l o c k (d i s a b l e d)

The following part contains the USB report descriptor, which is sent when the device is recognized by
the computer. Further USB settings are set in the usbdrv.h file which is provided with the USB driver.

1 PROGMEM c h a r u s b H i d R e p o r t D e s c r i p t o r [2 2] = { /∗ USB r e p o r t d e s c r i p t o r ∗/
2 0x06 , 0x00 , 0 x f f , // USAGE PAGE (G e n e r i c Desktop)
3 0x09 , 0x01 , // USAGE (Vendor Usage 1)
4 0 xa1 , 0x01 , // COLLECTION (A p p l i c a t i o n)
5 0x15 , 0x00 , // LOGICAL MINIMUM (0)
6 0x26 , 0 x f f , 0x00 , // LOGICAL MAXIMUM (2 5 5)
7 0x75 , 0x08 , // REPORT SIZE (8)
8 0x95 , 0x80 , // REPORT COUNT (1 2 8)
9 0x09 , 0x00 , // USAGE (U n d e f i n e d)

10 0xb2 , 0x02 , 0x01 , // FEATURE (Data , Var , Abs , Buf)
11 0 xc0 // END COLLECTION
12 } ;

Here we define further constants: the number of all CCD pixels and the remaining space in memory to
save the buffer. The full RAM size of Atmega8 is 1 kB, of which some bytes are occupied by variables
and stack and other bytes are required for the USB driver. Approximately 920 bytes remain to store
the data buffer in this configuration.

The BufMsrPos and BufBitPtr denote the position in the buffer to write the 10 bits measured by
ADC. The latter variable points to the bit at which the value shall be written, as is described later.
The CCDMsrPos variable is incremented after measurement of each pixel to indicate when the CCD
has been read out. The BufReadPos stores the position in the buffer which will the data transmission
start from. Following variables will be described later.

1 # d e f i n e PIXELS COUNT 5400
2 # d e f i n e MSR BUF SIZE 900

19

3 s t a t i c u n s i g n e d c h a r buf [MSR BUF SIZE] ;
4 s t a t i c i n t BufMsrPos ;
5 s t a t i c c h a r B u f B i t P t r ;
6 s t a t i c i n t CCDMsrPos ;
7 s t a t i c i n t BufReadPos ;
8 s t a t i c u n s i g n e d i n t I n t e g r T i m e ;
9 s t a t i c c h a r S t a t u s ; // i n d i c a t e s th e s t a t u s o f measurement or t r a n s m i s s i o n

This procedure creates a short delay of approximately 2 µs · num. It is needed to hold the minimum
timings when driving the CCD.

1 v o i d d e l a y (u n s i g n e d i n t num)
2 {
3 u n s i g n e d i n t i , j ;
4 f o r (j = 0 ; j < 2 ; j ++)
5 f o r (i = 0 ; i < num ; i ++)
6 ;
7 }

3.2.2 CCD driving

Following three procedures are used to drive the CCD. They may need to be modified if different CCD
is used. The first procedure performs one CCD register shift, as is drawn at Fig. 3. It both begins and
ends in the phase 1 state. A minimum delay of 110 ns is required for each phase [4].

1 v o i d CCDShiftReg () // e x p e c t s t he CCD to be i n t he p h i 2 s t a t e
2 {
3 PORTD = (PH1) ; // i n v e r s e RB s t r o b e
4 PORTD = (PH1 | RB) ;
5 d e l a y (0) ;
6 PORTD = (PH2 | RB) ;
7 d e l a y (0) ;
8 }

The CCDTransferGate procedure initiates the CCD readout by transferring the charge from the pho-
todiodes. When the transfer gate signal is activated, ten cycles of reset gate strobes are sent to the
CCD, as is recommended [4].

1 v o i d CCDTransferGate ()
2 {
3 i n t j ;
4 PORTD = (PH1) ;
5 PORTD = (PH1 | RB) ;
6 d e l a y (2) ;
7 f o r (j = 0 ; j < 1 0 ; j ++) { // t r a n s f e r g a t e
8 PORTD = (PH1 | TG123) ;
9 PORTD = (PH1 | TG123 | RB) ;

10 d e l a y (1) ;
11 }
12 PORTD = (PH1 | RB) ;
13 d e l a y (2) ;
14 PORTD = (PH2 | RB) ;
15 d e l a y (1) ;
16 }

20

The FlushCCD procedure first performs several full readouts to drain all excess charge from the CCD
(the more sensitivity was set, the more readouts are used). When the CCD was not used for a while,
this does not drain the charge at once and several such cycles are needed.

After this, an integration period begins. Its duration is determined by the IntegrTime global variable,
as the delay here is accomplished by running the ADC repeatedly each 32 CCD steps. The sampling
speed is approximately 10,000 samples per second. Therefore, the IntegrTime value of 32 sets the
integration time to half a second. Finally, the CCDTransferGate enables the measurement.

The sensitivity is roughly proportional to the integration time. However, two effects limit the inte-
gration time to approximately one second: first, the spectrometer does not respond to USB messages,
causing USB timeouts when integrating too long, and secondly, the CCD charge volatility creates a
significant background signal. To improve the sensitivity, the CCD would probably have to be cooled
by a Peltier element and the integration should be controlled by asynchronous timer. The best way
to detect weak signals in the current setup is to set moderate sensitivity and average multiple spectral
measurements.

1 v o i d FlushCCD () {
2 i n t j , i , k ;
3 PORTB |= BV (PB0) ;
4 CCDTransferGate () ; // r e a d t he CCD to d r a i n a l l c h a r g e
5 f o r (i = 0 ; i < I n t e g r T i m e ; i ++) {
6 f o r (j = 0 ; j < PIXELS COUNT ; j ++) { CCDShiftReg () ; } ;
7 CCDTransferGate () ;
8 }
9 f o r (j = 0 ; j < PIXELS COUNT ; j ++) {

10 f o r (i = 0 ; i < I n t e g r T i m e ; i ++) { // d e l a y l o o p
11 k++;
12 i f (k%32 == 0) {
13 ADCSRA |= BV (ADSC) ;
14 w h i l e (! (ADCSRA & BV (ADIF))) ;
15 ADCSRA |= BV (ADIF) ;
16 k˜= 0 ;
17 }
18 }
19 CCDShiftReg () ;
20 } ;
21 CCDTransferGate () ;
22 PORTB &= ˜(BV (PB0)) ;
23 }

3.2.3 USB communication

As noted above, the USB communication is ensured by a software driver by Hans Starkjohann (Objective
Development GmBH) [13] . The USB driver has relatively low requirements, as it occupies no more
than 1.5 kB of program code.

These definition will be be used later in the following routines.

1 // S p e c t r o m e t e r commands r e c e i v e d v i a USB
2 #d e f i n e COMMAND SET MEASURE 100
3 #d e f i n e COMMAND READ CALIB AMPLI 101
4 #d e f i n e COMMAND WRITE CALIB AMPLI 111
5 #d e f i n e COMMAND READ CALIB LAMBDA 102
6 #d e f i n e COMMAND WRITE CALIB LAMBDA 112

21

7 // S t a t u s
8 #d e f i n e STATUS IDLE 0
9 #d e f i n e STATUS CCD PENDING 1

10 #d e f i n e STATUS CCD INTEGRATING 2
11 #d e f i n e STATUS SAMPLING 3
12 #d e f i n e STATUS BUFFER READY 4
13 #d e f i n e STATUS CALIB READING 10
14 #d e f i n e STATUS CALIB WRITING 11
15 // Room f o r c a l i b r a t i o n data i n EEPROM
16 #d e f i n e CALIB BYTES PER POINT 4
17 // EEPROM b y t e s 9 . . . 410 r e s e r v e d f o r a m p l i t u d e c a l i b r a t i o n data
18 #d e f i n e CALIB AMPLI POINT NUMBER MAX 100
19 #d e f i n e CALIB AMPLI BUFPTR 9
20 // EEPROM b y t e s 411 . . 511 r e s e r v e d f o r lambda c a l i b r a t i o n data
21 #d e f i n e CALIB LAMBDA POINT NUMBER MAX 25
22 #d e f i n e CALIB LAMBDA BUFPTR 411

The usbFunctionSetup procedure is called by the driver always when a read or write packet arrives.
The type of packet can be obtained from the rq->bRequest structure.

1 usbMsgLen t u s b F u n c t i o n S e t u p (uchar data [8])
2 {
3 u s b R e q u e s t t ∗ rq = (v o i d ∗) data ;
4 i f ((rq−>bmRequestType & USBRQ TYPE MASK) == USBRQ TYPE CLASS) {
5 i f (rq−>bRequest == USBRQ HID GET REPORT) {
6 BufReadPos = 0 ;
7 r e t u r n USB NO MSG ; // use usbFunct ionRead () to o b t a i n data
8 }
9 e l s e i f (rq−>bRequest == USBRQ HID SET REPORT) {

10 r e t u r n USB NO MSG ; // use u s b F u n c t i o n W r i t e () to r e c e i v e data from h o s t
11 }
12 } e l s e {
13 // i g n o r e vendor t y p e r e q u e s t s , we don ’ t use any
14 }
15 r e t u r n 0 ;
16 }

The write packet contains data transmitted from the computer. Whereas the usbFunctionSetup is called
once the packet arrives, the driver calls the following function usbFunctionWrite repeatedly, supplying
the payload data in 8-byte chunks.

All actions of the spectrometer are initiated by an incoming USB message from the computer. The
first byte of the message describes the command, as is defined above in the #define COMMAND. . .
block. Possible commands are to start spectral measurement, to read or write the wavelength or
amplitude calibration.

Once a COMMAND SET MEASURE message arrives, the spectrometer sets the integration time,
flushes the CCD, starts the integration time, samples the data read from the CCD and stores the data
in internal buffer. These steps can take up to several seconds and would cause USB timeout error if
they were all done within the usbFunctionWrite procedure. Instead, only the Status variable is set here
to STATUS CCD PENDING and all mentioned tasks are performed later in the main loop.

The COMMAND READ CALIB AMPLI and COMMAND READ CALIB LAMBDA both set the
Status variable into the STATUS CALIB READING. The difference is in the initial EEPROM pointer
value only.

22

1 s t a t i c uchar EEPROMPtr ;
2 s t a t i c uchar Cal ibDataPointNumber ;
3 s t a t i c uchar b y t e s R e m a i n i n g ;
4 uchar u s b F u n c t i o n W r i t e (uchar ∗data , uchar l e n)
5 { // Longer t a s k s may not be h a n d l e d h e r e . I n s t e a d , s e t th e S t a t u s v a r i a b l e and

pe r f o r m them i n t he main r o u t i n e l a t e r .
6 i f (S t a t u s == STATUS CALIB WRITING) {
7 i f (b y t e s R e m a i n i n g == 0)
8 r e t u r n 1 ; // end o f t r a n s f e r
9 i f (l e n > b y t e s R e m a i n i n g) {

10 l e n = b y t e s R e m a i n i n g ;
11 S t a t u s = STATUS IDLE ;
12 }
13 e e p r o m w r i t e b l o c k (data , (uchar ∗) 0 + EEPROMPtr , l e n) ;
14 EEPROMPtr += l e n ;
15 b y t e s R e m a i n i n g −= l e n ;
16 i f (b y t e s R e m a i n i n g == 0) {
17 S t a t u s = STATUS IDLE ;
18 r e t u r n 1 ; // r e t u r n 1 i f t h i s was th e l a s t chunk
19 } e l s e r e t u r n 0 ;
20

21 }
22 // i f f i r s t chunk o f USB message , d e c i d e the command from the 1 s t b y t e
23 i f (S t a t u s == STATUS IDLE)
24 s w i t c h (data [0]) {
25 c a s e COMMAND SET MEASURE: {
26 // i f not zero , th e two b y t e s s e t t he s e n s i t i v i t y (i n t e g r a t i o n t ime) :
27 i f (data [1]+ data [2] != 0) { I n t e g r T i m e = data [1]∗2 5 6 + data [2] ; } ;
28 S t a t u s = STATUS CCD PENDING ;
29 r e t u r n 1 ; // no a d d i t i o n a l data r e q u i r e d
30 b r e a k ;
31 }
32 c a s e COMMAND READ CALIB LAMBDA :
33 c a s e COMMAND READ CALIB AMPLI : {
34 // d e c i d e which memory l o c a t i o n w i l l be r e a d
35 i f (data [0] == COMMAND READ CALIB AMPLI) {
36 EEPROMPtr = CALIB AMPLI BUFPTR ;
37 } e l s e {
38 EEPROMPtr = CALIB LAMBDA BUFPTR ;
39 }
40 // number o f p o i n t s to be r e a d
41 e e p r o m r e a d b l o c k (& bytesRemain ing , EEPROMPtr , 1) ;
42 b y t e s R e m a i n i n g=b y t e s R e m a i n i n g ∗CALIB BYTES PER POINT+1;
43 S t a t u s = STATUS CALIB READING ;
44 // no a d d i t i o n a l data r e q u i r e d :
45 r e t u r n 1 ;
46 b r e a k ;
47 }
48 c a s e COMMAND WRITE CALIB LAMBDA :
49 c a s e COMMAND WRITE CALIB AMPLI : {
50 // number o f p o i n t s to be w r i t t e n
51 b y t e s R e m a i n i n g = data [1] ∗ CALIB BYTES PER POINT ;
52 i f (data [0] == COMMAND WRITE CALIB AMPLI) {
53 EEPROMPtr = CALIB AMPLI BUFPTR ;
54 } e l s e {

23

55 EEPROMPtr = CALIB LAMBDA BUFPTR ;
56 }
57 // 1 s t b y t e o f EEPROM b l o c k s t o r e s number o f p o i n t s :
58 e e p r o m w r i t e b l o c k (data +1, EEPROMPtr , 1) ;
59 EEPROMPtr++;
60 S t a t u s = STATUS CALIB WRITING ;
61 // l a s t 6 B o f t h i s chunk d i s c a r d e d , n e x t chunk w i l l c o n t a i n data
62 r e t u r n 0 ;
63 b r e a k ;
64 }
65 }
66 }

The usbFunctionRead function is called when the computer asks the spectrometer for measured data.
Naturally, the action depends on the Status variable: if the spectrometer finished the measurement
recently, the spectral data are sent; if the microcontroller was requested for its calibration data, the
corresponding EEPROM block is sent. Otherwise, no action is performed and the function returns 0 to
indicate that no more data are available.

The USB specification limits the payload data length to 8 bytes for USB low-speed devices; however
this would make the communication slow. Therefore, an extended length of packet up to the buffer size
is used. This bigger size of packets is common for high-speed devices and it has been tested to work
flawlessly, enabling to quickly transport the whole buffer in a single USB message.

1 uchar usbFunct ionRead (uchar ∗data , uchar l e n)
2 {
3 i f (S t a t u s == STATUS IDLE) { // no command s e t
4 r e t u r n 0 ;
5 }
6 i f (S t a t u s == STATUS BUFFER READY) { // Transmit the b u f f e r w i t h

spectrum to th e computer .
7 i f (l e n > (BufMsrPos − BufReadPos − 1)) { // b u f f e r w i l l be d e p l e t e d , r e a d

th e l e f t b y t e s
8 l e n = (BufMsrPos − BufReadPos) ;
9 i f (CCDMsrPos < PIXELS COUNT) { S t a t u s = STATUS SAMPLING ; B u f B i t P t r = 0 ;

BufMsrPos = 0 ;}
10 e l s e { S t a t u s = STATUS IDLE ; } ;
11 BufMsrPos = 0 ;
12 }
13 i n t DataPos ;
14 f o r (DataPos =0; DataPos<(l e n) ; DataPos++) {
15 data [DataPos] = buf [BufReadPos + DataPos] ;
16 buf [BufReadPos + DataPos] = SENT BUF STUFF ;
17 } ;
18 BufReadPos += l e n ;
19 r e t u r n l e n ;
20 }
21 i f (S t a t u s == STATUS CALIB READING) { // t r a n s m i t t he c a l i b r a t i o n data

from EEPROM
22 i f (l e n > b y t e s R e m a i n i n g) {
23 l e n = b y t e s R e m a i n i n g ;
24 S t a t u s = STATUS IDLE ;
25 }
26 e e p r o m r e a d b l o c k (data , (uchar ∗) 0 + EEPROMPtr , l e n) ;
27 EEPROMPtr += l e n ;

24

28 b y t e s R e m a i n i n g −= l e n ;
29 r e t u r n l e n ;
30 }
31 r e t u r n 0 ;
32 }

3.2.4 The main loop

This loop is called after the microcontroller starts and its clock stabilizes.
During this loop the microcontroller continuously polls the USB driver for incoming packets, which

is required to ensure reliable communication, and performs the action the Status variable describes.
After the CCD readout is finished, the Status variable is finally set to the STATUS BUFFER READY
value. In a consequent read request from computer, the spectrometer sends the data in one or more
USB packets and Status is set back to STATUS IDLE.

1 i n t main (v o i d)
2 {
3 DDRB |= BV (PB0) | BV (PB1) ; DDRD |= (TG123 | PH1 | PH2) ; DDRD |= (RB | CLB |

SHB) ; // e n a b l e output p i n s
4 ADMUX = 0 ; ADCSRA |= BV (ADEN) | BV (ADPS2) | BV (ADPS2) ; // A/D c o n v e r t e r

s e t t i n g s
5 o d D e b u g I n i t () ; u s b I n i t () ; u s b D e v i c e D i s c o n n e c t () ; // e n f o r c e re−

e n u m e r a t i o n
6 u n s i g n e d c h a r i ; i = 0 ; w h i l e (−− i) {w d t r e s e t () ; d e l a y m s (5) ; } // f a k e USB

d i s c o n n e c t f o r > 250 ms
7 usbDev iceConnect () ; s e i () ;
8 I n t e g r T i m e = 1 ;
9 BufMsrPos = 0 ;

10 CCDMsrPos = 0 ;
11 S t a t u s = STATUS IDLE ;
12 f o r (; ;) {
13 u s b P o l l () ;
14 i n t j ;
15 i n t MeasPerPo l l = 1 ;
16 i n t PixPerMeas = 8 ; // b u f f e r c a p a c i t y : 900 B = 7200 b = 720 px ; 5400 p i x

/8 = 675 p i x
17 i f (S t a t u s == STATUS CCD PENDING) {
18 S t a t u s = STATUS CCD INTEGRATING ;
19 // e r a s e b u f f e r
20 i n t i ; f o r (i =0; i<MSR BUF SIZE ; i ++) { buf [i] = EMPTY BUF STUFF ; } ;
21 FlushCCD () ;
22 B u f B i t P t r = 0 ;
23 CCDMsrPos = 0 ;
24 BufMsrPos = 0 ;
25 S t a t u s = STATUS SAMPLING ;
26 }
27 i f (S t a t u s == STATUS SAMPLING)
28 f o r (j =0; j<MeasPerPo l l ; j ++)
29 i f (CCDMsrPos < PIXELS COUNT) {
30 i f (BufMsrPos < (MSR BUF SIZE−1)) {
31 u n s i g n e d i n t v a l u e = 0 ;
32 f o r (i =0; i<PixPerMeas ; i ++) {
33 CCDShiftReg () ; CCDMsrPos += 1 ;

25

34 ADCSRA |= BV (ADSC) ;
35 w h i l e (! (ADCSRA & BV (ADIF))) ;
36 ADCSRA |= BV (ADIF) ;
37 // 10 b i t s ADC i n p u t , a l w a y s r e a d ADCL f i r s t
38 v a l u e += ADCL + 256∗(ADCH&3) ;
39 }
40 // a v e r a g e from s e v e r a l measurements
41 v a l u e = v a l u e / PixPerMeas ;
42 c h a r BitNumber = 1 0 ;
43

44 // remove l e a d i n g z e r o s
45 u n s i g n e d i n t s v a l u e = v a l u e << (16 − BitNumber) ;
46 i n t V a l B i t P t r = 0 ;
47 // c o m p r e s s e s 4 p i x e l s ∗ 10 b i t s to 5 b y t e s
48 w h i l e (V a l B i t P t r < BitNumber) {
49 i n t ChunkLen = 8 − B u f B i t P t r ;
50 i f (ChunkLen > BitNumber−V a l B i t P t r) {ChunkLen = BitNumber−

V a l B i t P t r ; } ;
51 u n s i g n e d c h a r Chunk = ((s v a l u e << V a l B i t P t r) >> B u f B i t P t r) >>

8 ;
52 u n s i g n e d c h a r Mask = ˜(0 xFF >> B u f B i t P t r) ;
53 buf [BufMsrPos] = (buf [BufMsrPos] & Mask) | (Chunk & 0xFF) ;
54 V a l B i t P t r += ChunkLen ; B u f B i t P t r += ChunkLen ;
55 i f (B u f B i t P t r >= 8) {B u f B i t P t r −= 8 ; BufMsrPos++;}
56 }
57 } e l s e {
58 B u f B i t P t r = 0 ;
59 S t a t u s = STATUS BUFFER READY ; // b u f f e r f u l l , w a i t u n t i l th e

computer r e a d s the data
60 }
61 } e l s e {
62 S t a t u s = STATUS BUFFER READY ; // whole CCD read , w a i t
63 }
64 }
65 r e t u r n 0 ;
66 }

The used CCD detector had much more pixels than the microcontroller could hold in the buffer at once.
Although full CCD data could be read and transmitted sequentially, this was problematic due to the
sawtooth bias. The need to fit the full CCD readout into the 7200 bits long buffer has lead to these
two measures:

1. As the microcontroller has a 10-bit analog-to-digital converter, the measured values are com-
pressed on the fly so that each value does not occupy 16 bits as in an integer, but only the
significant 10 bits. Theoretically, the 7200 bit buffer can hold 720 measured points.

2. The total pixel number was 5400. Dividing this by 8 we obtain 675 measured points, which fits
the buffer the best. Accordingly, eight pixels were read sequentially and then averaged.

This reduced the noise significantly, but did not spoil the spectral accuracy much, because the
optical imprecision manifested even in the reduced pixel number.

26

3.3 Computer software

The software in computer was split into two programs:

1. the backend ensures communication with the spectrometer and transforms the data according to
the wavelength and amplitude calibration,

2. and the frontend, which provides graphical user interface and, calling the backend repeatedly,
presents the measured spectra in real time.

3.3.1 Command line backend for USB communication

The backend is written in C, compiled using the Gnu Compiler Collection (gcc, version 4.4.3). It was
developed and tested under Linux 2.6, but it is designed to compile and run under Windows and other
operating systems, too. Under Linux, the backend depends on libusb, on Windows it depends on the
Driver Development Kit (DDK), which should be shipped along with MinGW compiler [13].

The full code is included in the attached CD and it will not be listed here. The commandline
backend accepts several commands. The first parameter determines the action performed and optional
parameters are in square brackets:

1. set measure [integration time] starts the measurement, integration time ranges from 1 to
approx. 200

2. get spectrum receives, transforms and writes out the spectrum to the stdout

3. write calib ampli lambda1:amplitude1,[lambda2:amplitude2,[...]] write amplitude
calibration to the EEPROM

4. write calib lambda pixel1:lambda1,[pixel2:lambda2,[...]] write wavelength calibra-
tion

5. read calib ampli [--short] reads amplitude calibration from the EEPROM

6. read calib lambda [--short] write wavelength calibration

Usually the get spectrum command is called soon after the set measure was called. (These commands
do never have to be joint together into one command, as the spectrometer requires about half a second
to measure the spectrum and much longer wait periods can occur if longer integration time is needed.
Such single command would halt the backend from responding. This would consequently either cause
the frontend not to respond for a while or it would require to implement multiple threads.)

The calibration write commands use the second parameter to set the calibration points in the
EEPROM. Each calibration point occupies 4 bytes in the EEPROM. See the README file for more
information.

For wavelength calibration, pairs of pixel number and corresponding wavelength in picometers have
to be input in the format of pairs of integers related by colon and separated by comma. First two bytes
are the integer position of the pixel. Following two bytes are the wavelength divided by 32 pm. Therefore,
the wavelength of 221 = 2,097,152 pm is encoded as the maximum integer value 216 = 65,536.

For amplitude (i. e. sensitivity) calibration, the pairs of wavelength and corresponding coefficient
are used, as the sensitivity curve mostly depends not on the optical geometry, but rather on the averaged
spectral sensitivity of the three CCD channels. If the projected image moves slightly, only the wavelength

27

calibration would have to be repeated. The wavelength and the coefficient are calculated similarly as
above.

3.3.2 Data preprocessing according to calibration

Once the data are received in the compressed raw form, they are read sequentially to convert each
10 bits to a new integer that can be dealt with easier. For each measured point, the wavelength is
calculated with spline interpolation of the calibration points.

Then, the calculated wavelength is input to the second spline interpolation, which calculates the
sensitivity coefficient for the given wavelength and divides the measured data by this coefficient.

The spectrum is output to stdout with two columns of tab-separated numbers, and usually this
output is redirected into a file. This form of communication does not cause much holdup, because the
file is stored in the disk cache and possibly does not get written to the disk until it is read by frontend
and rewritten by new measurement.

3.3.3 Python module backend

Two versions of the backend were written: one as a standalone binary operated from command line,
the second is a python module, which can be loaded dynamically into the running python program. The
graphical user interface uses this module.

The functions provided by the backend module are nearly the same, except for not existing equivalent
for the get spectrum parameter. The SetMeasure function not only starts the measurement, but also
receives the spectrum, performs calibration transformation and return it as two lists of wavelenghts and
corresponding values.

3.3.4 Graphical user interface

Unlike the firmware and backend, the graphical frontend was written in the Python language with Gtk
widgets. Python is an interpreted language with simple syntax and many advanced features. Its great
advantage is the number of additional modules, which facilitate various tasks. Among others, the
numpy and scipy modules were included to perform mathematical operations, matplotlib to plot the
interactive, antialiased graphs and gtk python module to build the graphical user interface.

The gtk libraries are a widget toolkit often used to create multiplatform graphical applications. The
gtk libraries are commonly installed on Linux desktops by default, under Windows, one has to download
and install them. Both python and gtk are released under free licenses compatible with GPL [7], [15].
Thanks to this, all the software equipment of the spectrometer can be distributed without any license
costs.

The graphical user interface provides only basic functions as for now (see Fig. 10). It allows to
switch between manual spectral measurement and automatic measurement, which runs the spectrometer
repeatedly when the previous spectrum was acquired and displayed.

The Sensitivity slider at the top sets the integration time to be two on the power of the value set.
The most practical values are between 2 and 5.

Averaging can be set either to the moving average of 2 to 64 waveforms, or to average infinitely to
suppress the sampling noise.

There is an option to calibrate the amplitude, which is the most important for measurement of
a transmittance T (λ) of a sample. The calibration curves are stored in the computer memory. The
spectrometer should be recalibrated always when the light source changes. It is recommended that after

28

Fig. 10: A screenshot of the graphical user interface, showing the orange-red fluorescence of a highlighter pen
illuminated by a green laser pointer, whose reflection manifests as the narrow peak at 532 nm. Note also the
weak component at ≈ 810 nm coming from the laser diode pumping the Nd:YVO4 crystal.

several minutes of CCD warm up, the source is turned off and the dark signal calibration curve ID(λ) is
set, then the source is turned on again without the sample and the full signal curve IF (λ) is set. Long
averaging time improves accuracy. When the amplitude calibration is applied to the measured signal
IM(λ), the transmission T (λ) is calculated the following way:

T (λ) =
IM(λ)− ID(λ)

IF (λ)− ID(λ)
,

i. e., the dark signal curve ID is subtracted first, then the remaining extra signal is divided by the source
intensity at given wavelength. To suppress noise, an intensive and broadband source, such as focused
halogen bulb, is needed.

Thanks to the interactive interface of the matplotlib package, the graph may be zoomed and panned,
as well as easily exported into a bitmap file.

3.3.5 Calibration

The calibration procedure consists of two steps, that shall be done in the following order: the wavelength
and the amplitude calibration.

For the wavelength calibration, a common compact fluorescent lamp (CFL) may be used. Such
lamp contains diluted inert gas and mercury vapor and at the inner surface, a thin fluorescent layer
of europium and terbium salts is sputtered. The output spectrum consists of many spectral lines with

29

Fig. 11: Emission of a compact fluorescent lamp, 5 s after cold start (black) and ≈ 60 s later (blue). The
horizontal axis is the wavelength in nanometers.

different intensity and width, of which the most intensive are listed in the Table 2. The spectrum
was first acquired without calibration, then the peaks were easily resolved and corresponding calibration
points were saved. As noted above, the backend uses spline interpolation/extrapolation and accordingly
even for three distant enough calibration points it was possible to obtain reasonable spectral accuracy.

The amplitude calibration requires a source of a broad and known spectrum. Possible candidates
are a halogen bulb or common daylight. Similarly as for the wavelength calibration, several calibration
points shall be calculated from the shape of uncalibrated spectrum. The value of each point is obtained
as a ratio of the measured intensity to the expected real intensity of the source.

It must be noted that the amplitude calibration does not take into account the linear background.
This background depends on CCD temperature and sensitivity. Therefore, the background transforms
to a curve that may not be easily visually subtracted without previous observation of its shape for zero
input light.

Additionally, it was observed that the spectrometer sensitivity varies by several percent from pixel
to pixel. This can be accounted to irregularities of the cylindrical mirror or the CCD detector. Un-
fortunately, the corresponding compensation curves would not fit into the internal EEPROM of the
microcontroller. Both unwanted effects must be compensated in the graphical user interface as the
amplitude calibration curves for a particular device and ligth source.

30

Table 2: List of the CFL spectral lines used for the wavelength calibration [17]

Color Origin Peak wavelength [nm]
Dim violet Mercury 404
Dim blue Mercury 436
Turquoise Terbium 485 to 490
Green doublet Terbium and Mercury 544, 546
Red Europium 611
Near infrared Argon 811

4 Results

In this section, several measured spectra will be presented to illustrate the performance and shortcomings
of the current design. In the Figure 11, the spectra of a starting 15 W IKEA compact fluorescent lamp
is shown. This lamp was used to calibrate the spectrometer. The spectrum has been averaged from 16
measurements to suppress the noise and no amplitude calibration was used here.

Initially, the argon filling emits mostly in the near infrared region. The slow start is probably caused
by slow evaporation of the mercury filling, which manifests as growth of the spectral lines in visible
region. Note that on the contrary, some lines intensity drops during the start.

With longer averaging and proper zoom, several other lines may be resolved, such as the weak violet
mercury line at 406 nm.

Both the blue mercury line at 436 nm and the infrared argon line at 811 nm are emitted by diluted
gas and are therefore narrow enough to assess the spectral resolution. The spectrometer measured their
width at half maximum as 5 to 8 nm, which can be considered to be the maximum spectral resolution
of the device. However, with proper zoom, the green peak at the 544 to 546 nm has a shallow, yet
stable notch in its center. This may be accounted either to the nonuniformity of CCD response, or to
the fine resolution of spectra. (Both is possible as the convolution function is probably not gaussian,
but has a sharp peak instead.)

The Figure 12 depicts three spectral curves measured by passing an incandescent bulb light through
a 10 mm long cuvette with pure water and two different concentrations of potassium permanganate
(KMnO4). In low concentration, the very strong absorption in the green spectral region causes the
pink tint of the solution. In higher concentration, broader spectral region from 450 to 650 nm gets
absorbed. This explains the visible hue difference of different concentrations. The amplitude growth in
unabsorbed regions is caused by the cuvette displacement.

In this measurement, the amplitude calibration did not correct the pixel-to-pixel nonuniformity,
although the spectrum was averaged from 16 measurements again. For practical application, the
proper calibration for the particular source and fixed cuvette position is important.

5 Conclusion

In the above sections, a concept of a cheap, compact digital spectrometer was presented. If a CCD
detector from an old scanner is used, the components cost less than 20 Euro. (A new suitable CCD can
be obtained for under 10 Euro if a bigger package is requested.) The work per each next piece can be
expected to be less than 5 hours, since the first prototype is tested and both the software and firmware
are ready.

31

Fig. 12: Transmission of pure water (black line); of water with ≈ 10 µmol/l solution of KMnO4 (red line) and
of water with ≈ 100 µmol/l solution thereof (green line). The horizontal axis is the wavelength in nanometers.

In the Results section it was shown that such device works with sensitivity and resolution acceptable
for many tasks both in education and research. The graphical user interface makes the device relatively
easy to work with.

The main conclusion of this work is that it is possible to build a relatively usable, cheap and portable
digital spectrometer.

6 Appendix

A CD with the software and source code is attached to this project. The graphical user interface can
be found as cdrom:///gui/CCD spectrometer GUI.py. See the cdrom:///gui/README.txt file for
installation notes and more information.

The spectrometer firmware source codes reside in cdrom:///firmware/ and the source of the
command line backend in cdrom:///commandline/.

A copy of this PDF is included on the CD.

32

Fig. 13: Front view of the assembled spectrometer

References

[1] Amit Bhagwat and Ankur Kumar. CCDImager – the use of the Atmel Mega32 microcontroller
for imaging, 2007. URL <http://courses.cit.cornell.edu/ee476/FinalProjects/s2007/

arb66_ak364/arb66_ak364/Index.html>.

[2] Igor Češko. Implementation USB into microcontroller: Igorplug-USB. URL <http://www.cesko.

host.sk/IgorPlugUSB/IgorPlug-USB\%20(AVR)_eng.htm>.

[3] Atmel Corporation. ATmega8(L) data sheet, 2003. URL <www.datasheetarchive.com>.

[4] NEC Corporation. µPD3799 data sheet, 1999. URL <www.datasheetarchive.com>.

[5] Kamil Eckhardt. USB - univerzálńı sériová sběrnice, 2002. URL <http://home.zcu.cz/

~eckhardt/popis.html>.

[6] Filip Dominec et al. Programujeme jednočipy, czech textbook at Wikibooks, 2009. URL <http:

//cs.wikibooks.org/wiki/Programujeme_jedno\%C4\%8Dipy>.

[7] Python Software Foundation. Python license, 2010. URL <http://www.python.org/psf/

license/>.

[8] Edmund Optics Inc. Reflective ruled diffraction gratings, 2010. URL <http://www.

edmundoptics.com/onlinecatalog/displayproduct.cfm?productid=1896>.

[9] Future Technology Devices Intl. Ltd. FT232BL datasheet, 2005. URL <http://www.

datasheetarchive.com/>.

33

[10] Brian Manning. A grating ruling engine. Scientific American, 4:232, April 1975.

[11] Courtney Peterson. How It Works: The Charged-Coupled Device, or CCD, 2001. URL <http:

//www.jyi.org/volumes/volume3/issue1/features/peterson.html>.

[12] Jan Smrž. Implementace USB rozhrańı AVR mikrokontrolérem. Master thesis, ČVUT, Praha,
2008. URL <http://smrz.chrudim.cz/>.

[13] Christian Starkjohann. Virtual USB port for AVR microcontrollers, 2010. URL <http://www.

obdev.at/products/vusb/index.html>.

[14] Paul Stoffregen. CCD Array Reader Project, 1992. URL <http://www.pjrc.com/tech/ccd/>.

[15] The GTK+ Team. The gtk+ license, 2008. URL <http://www.gtk.org/>.

[16] The USB Implementers Forum Inc. (USB-IF). Universal Serial Bus Revision 2.0 specification, 2010.
URL <http://www.usb.org/developers/docs/usb_20_052510.zip>.

[17] Wikipedia user Deglr6328. Fluorescent lighting spectrum, 2009. URL <http://en.wikipedia.

org/wiki/File:Fluorescent_lighting_spectrum_peaks_labelled.png>.

34

